Intracellular reduction/activation of a disulfide switch in thiosemicarbazone iron chelators.
نویسندگان
چکیده
Iron scavengers (chelators) offer therapeutic opportunities in anticancer drug design by targeting the increased demand for iron in cancer cells as compared to normal cells. Prochelation approaches are expected to avoid systemic iron depletion as chelators are liberated under specific intracellular conditions. In the strategy described herein, a disulfide linkage is employed as a redox-directed switch within the binding unit of an antiproliferative thiosemicarbazone prochelator, which is activated for iron coordination following reduction to the thiolate chelator. In glutathione redox buffer, this reduction event occurs at physiological concentrations and half-cell potentials. Consistent with concurrent reduction and activation, higher intracellular thiol concentrations increase cell susceptibility to prochelator toxicity in cultured cancer cells. The reduction of the disulfide switch and intracellular iron chelation are confirmed in cell-based assays using calcein as a fluorescent probe for paramagnetic ions. The resulting low-spin Fe(III) complex is identified in intact Jurkat cells by EPR spectroscopy measurements, which also document a decreased concentration of active ribonucleotide reductase following exposure to the prochelator. Cell viability and fluorescence-based assays show that the iron complex presents low cytotoxicity and does not participate in intracellular redox chemistry, indicating that this antiproliferative chelation strategy does not rely on the generation of reactive oxygen species.
منابع مشابه
Iron chelators as therapeutic agents for the treatment of cancer.
A wide variety of studies in vitro, in vivo, and in clinical trials have demonstrated that the chelator currently used to treat iron overload disease, desferrioxamine, has anti-proliferative effects against both leukemia and neuroblastoma. However, the efficacy of desferrioxamine is severely limited due to its poor ability to permeate cell membranes and chelate intracellular iron pools. These s...
متن کاملThe potent and novel thiosemicarbazone chelators di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone and 2-benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone affect crucial thiol systems required for ribonucleotide reductase activity.
Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone possesses potent and selective antitumor activity. Its cytotoxicity has been attributed to iron chelation leading to inhibition of the iron-containing enzyme ribonucleotide reductase (RR). Thiosemicarbazone iron complexes have been shown to be redox-active, although their effect on cellular antioxidant systems is unclear. Using a variety of an...
متن کاملThe medicinal chemistry of novel iron chelators for the treatment of cancer.
Cancer is one of the leading causes of death worldwide and there is an increasing need for novel anti-tumor therapeutics with greater selectivity and potency. A new strategy in the treatment of cancer has focused on targeting an essential cell metabolite, iron (Fe). Iron is vital for cell growth and metabolism, forming a crucial component of the active site of ribonucleotide reductase (RR), the...
متن کاملNew thiosemicarbazones based on quinoline scaffold as anticancer iron chelators
Novel quinoline derivatives was designed as anticancer iron chelators. Structurally they combine active moieties of known quinoline and thiosemicarbazone bioeffectors. For the synthetic part of study we applied microvawe assisted techniques MAOS. Resulted compounds exhibited interesting anticancer activities against HCT116 cancer cells.
متن کاملMembrane transport and intracellular sequestration of novel thiosemicarbazone chelators for the treatment of cancer.
Iron is a critical nutrient for DNA synthesis and cellular proliferation. Targeting iron in cancer cells using specific chelators is a potential new strategy for the development of novel anticancer agents. One such chelator, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), possesses potent and selective anticancer activity (J Med Chem 50:3716-3729, 2007). To elucidate the mechanisms of it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Metallomics : integrated biometal science
دوره 6 10 شماره
صفحات -
تاریخ انتشار 2014